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Abstract. Due to anisotropic momentum distribution the parton system produced at the early stage of
relativistic heavy-ion collisions is unstable with respect to the magnetic plasma modes. The instabilities
isotropize the system and thus speed up the process of its equilibration. The scenario of instabilities-driven

isotropization is reviewed.

PACS. 12.38.Mh Quark-gluon plasma — 25.75.-q Relativistic heavy-ion collisions

1 Introduction

The matter created in relativistic heavy-ion colli-
sions manifests a strongly collective hydrodynamic be-
haviour [1] which is particularly evident in studies of the
so-called elliptic flow [2]. Hydrodynamic description re-
quires, strictly speaking, a local thermal equilibrium and
experimental data on the particle spectra and elliptic flow
suggest, when analysed within the hydrodynamic model,
that an equilibration time of the parton! system is as short
as 0.6 fm/c [1]. Such a fast equilibration can be explained
assuming that the quark-gluon plasma (QGP) is strongly
coupled [3]. However, it is far not excluded that due to
the high-energy density at the early stage of the colli-
sion, when the elliptic flow is generated, the plasma is
weakly coupled because of the asymptotic freedom. Thus,
the question arises whether the weakly interacting plasma
can be equilibrated within 1fm/ec.

Calculations, which assume that the parton-parton
collisions are responsible for the equilibration of the
weakly interacting QGP, provide an equilibration time of
at least 2.6 fm/c [4]. To thermalize the system one needs
either a few hard collisions of the momentum transfer of
order of the characteristic parton momentum?, which is
denoted here as T (as the temperature of equilibrium sys-
tem), or many collisions of smaller transfer. As discussed
in e.g. [5], the inverse time scale of the collisional equili-
bration is of order g* In(1/g) T, where g is the QCD cou-
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! The term “parton” is used to denote quark or gluon.

2 Although an anisotropic system is considered, the charac-
teristic momentum in all directions is assumed to be of the
same order.

pling constant. However, the equilibration is speeded up
by instabilities generated in an anisotropic QGP [6-8],
as growth of the unstable modes is associated with the
system’s isotropization. The characteristic inverse time of
instability development is roughly of order g7 for a suffi-
ciently anisotropic momentum distribution [6,9-11]. Thus,
the instabilities are much “faster” than the collisions in the
weak-coupling regime. Recent numerical simulation [12]
shows that the instabilities-driven isotropization is indeed
very efficient.

The isotropization should be clearly distinguished from
the equilibration. The instabilities-driven isotropization is
a mean-field reversible phenomenon which is not accom-
panied with the entropy production [6,12]. Therefore, the
collisions, which are responsible for the dissipation, are
needed to reach the equilibrium state of maximal entropy.
The instabilities contribute to the equilibration indirectly,
shaping the parton momenta distribution.

A large variety of instabilities of the electron-ion
plasma are known [13]. Those caused by coordinate space
inhomogeneities, in particular by the system’s boundaries,
are usually called hydrodynamic instabilities while those
due to non-equilibrium momentum distribution of plasma
particles are called kinetic instabilities. Hardly anything is
known about QGP hydrodynamic instabilities, and I will
not speculate about them. The kinetic instabilities are ini-
tiated either by the charge or current fluctuations. In the
first case, the electric field (E) is longitudinal (E || k,
where k is the wave vector), while in the second case the
field is transverse (E L k). For this reason, the kinetic
instabilities caused by the charge fluctuations are usually
called longitudinal while those caused by the current fluc-
tuations are called transverse. Since the electric field plays
a crucial role in the longitudinal mode generation, the



876

longitudinal instabilities are also called electric while the
transverse ones are called magnetic. The electric instabil-
ities, which occur in systems with multi-bump momen-
tum distributions [13], are rather irrelevant for QGP pro-
duced in relativistic heavy-ion collisions. For this reason
the longitudinal modes are not discussed here. The mag-
netic mode known as the filamentation or Weibel instabil-
ity appears to be relevant because a momentum anisotropy
is a sufficient condition for its existence. In the follow-
ing sections a whole scenario of the instabilities-driven
isotropization is discussed. A more extensive account of
the scenario is given in [14] where, in particular, other ap-
proaches to the problem of QGP thermalization are also
presented. Here, however, very recent developments are
briefly discussed.

2 Seeds of the filamentation and its
mechanism

Let me consider a non-equilibrium parton system which
is homogeneous but the parton momentum distribution
is anisotropic. The system is on average locally colourless
but colour fluctuations are possible. Therefore, (j(z)) =
0, where j#(x) is a local colour four-current in the adjoint
representation of SU(N,) gauge group with p =0,1,2,3
and a =1,2,..., N2 — 1 being the Lorentz and colour in-
dex, respectively; = (¢,x) denotes a four-position in the
coordinate space. As discussed in [15], the current corre-
lator for a classical system of free partons is

def ;. )
= (il (t, x1)jy (b2, %2)) =

1 2 5ab / d’p ptp”
@n)? E2

MY (t,%)

F(0) ¥ (x—vt), (1)

89

where (¢,x) = (t2—t1,X2—%1), v = p/Ep and the effective
parton distribution function f(p) equals n(p) + n(p) +
2Ncng(p) with n(p), a(p) and n,y(p) giving the aver-
age colourless distribution function of quarks Q¥ (z,p) =
§in(p), of antiquarks Q¥ (z,p) = 6Yn(p), and of glu-
ons G%(z,p) = §%n,(p). We note that the distribution
function of (anti)quarks belongs to the fundamental rep-
resentation of the SU(N,) group while that of gluons to
the adjoint representation. Therefore, i,7 = 1,2,..., N,
and a,b=1,2,..., N2 - 1.

Due to the average space-time homogeneity, the cor-
relation tensor (1) depends only on the difference (¢t —
t1,x2 — x1). The space-time points (¢1,x1) and (t2,%2)
are correlated in the system of non-interacting particles if
a particle travels from (t1,x1) to (t2,x2). For this reason
the delta 6(®) (x —vt) is present in the formula (1). The mo-
mentum integral of the distribution function simply rep-
resents the sum over particles. The fluctuation spectrum
is found as a Fourier transform of the tensor (1),

1 d&*p p'p”
MHY k) == 25ab/
w (1) =g @r)? E2

fP) 2w (w — kv).
(2)
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To compute the fluctuation spectrum, the parton mo-
mentum distribution has to be specified. Such calculations
with two forms of the anisotropic momentum distribution
are presented in [15]. Here I only qualitatively discuss
egs. (1), (2). I assume that the momentum distribution
is elongated in, say, the z-direction. Then, eqs. (1), (2)
clearly show that the correlator M** is larger than M**
or MYY. Tt is also clear that M?** is the largest when
the wave vector k is along the direction of the momen-
tum deficit. Then, the delta function 6(w — kv) does not
much constrain the integral in eq. (2). Since the momen-
tum distribution is elongated in the z-direction, the cur-
rent fluctuations are the largest when the wave vector k is
the zy-plane. Thus, I conclude that some fluctuations in
the anisotropic system are large, much larger than in the
isotropic one. An anisotropic system has a natural ten-
dency to split into the current filaments parallel to the
direction of the momentum surplus. These currents are
seeds of the filamentation instability.

Let me now explain in terms of elementary physics why
the fluctuating currents, which flow in the direction of the
momentum surplus, can grow in time. To simplify the dis-
cussion, which follows [15], I consider an electromagnetic
anisotropic system. The form of the fluctuating current is
chosen to be

j(:L‘) =J é. COS(kml‘), (3)

where e, is the unit vector in the z-direction. We have
the current filaments of thickness 7/|k,| with the current
flowing in the opposite directions in the neighbouring fila-
ments. The magnetic field B generated by the current (3)
is oriented along the axis y and the Lorentz force acting
on the partons, which fly in the z-direction, is

F(z) =qv x B(z) = —qu, ki &, sin(k,x),

where ¢ is the electric charge. One observes, see fig. 1, that
the force distributes the partons in such a way that those,
which positively contribute to the current in a given fila-
ment, are focused in the filament centre while those, which
negatively contribute, are moved to the neighbouring one.
Thus, the initial current grows. For a somewhat different
explanation see [11].

3 Dispersion equation

The equation of motion of the Fourier-transformed chro-
modynamic field A*(k) is

[ngﬂ" —EREY — 1T (R)] AL (k) = 0, (4)

where IT*¥(k) is the polarization tensor or gluon self-
energy which is discussed later on. A general plasmon dis-
persion equation is of the form

det[k2gm — kMEY — H‘“’(k)] =0. (5)
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Fig. 1. The mechanism of filamentation instability, see text
for the description.

The polarization tensor, which can be derived in the linear
response approximation either within the transport theory
or diagrammatically [16], is

w90 [ P f@) [ k)P + p'EY)
e = | @7 Ip| [ THOE

2
R+ (- k)Qg“”}
(p-k)? ’

where f(p) is the already defined effective parton distri-
bution function; the spin and flavour are treated as parton
internal degrees of freedom. The quarks and gluons are as-
sumed to be massless. Since IT#¥ (k) is the unit matrix in
the colour space, the colour indices are suppressed.

Due to the transversality of IT*¥(k) (k, 1" (k) =
k, 11" (k) = 0) not all components of IT*”(k) are in-
dependent of each other, and consequently the disper-
sion equation (5), which involves a determinant of 4 x 4
matrix, can be simplified to the determinant of 3 x 3
matrix. For this purpose, I introduce the chromoelectric
permittivity tensor €™ (k), where the indices I,m,n =
1,2, 3 label three-vector and tensor components. Because
em(k)E'(K)E™(k) = IT"(k)Au(k)A,(k), where E is
the chromoelectric vector, the permittivity can be ex-
pressed through the polarization tensor as €™ (k) = §!™ +
IT'"™ (k) /w?. Then, the dispersion equation gets the form

(6)

det [k%lm — k™ - w%lm(k)} —0. (7)

Substituting the permittivity €™ (k) into eq. (7), one
fully specifies the dispersion equation (7) which provides
a spectrum of quasi-particle bosonic excitations. A solu-
tion w(k) of eq. (7) is called stable when Imw < 0 and
it is called unstable when Imw > 0. In the first case the
amplitude is constant or it exponentially decreases in time
while in the second one there is an exponential growth of
the amplitude. In practice, it appears difficult to find so-
lutions of eq. (7) because of the rather complicated struc-
ture of the dielectric tensor. A quite general analysis of
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Fig. 2. The growth rate of the unstable mode as a function of
the wave vector k = (k1,0,0) for 0, = 0.3 GeV and 4 values of
the parameter o which controls the system’s anisotropy. The
figure is taken from [9].

the dispersion equation of the anisotropic system is given
in [10]. The problem simplifies as we are interested in spe-
cific modes which are expected to be unstable. Namely, we
look for solutions corresponding to the fluctuating current
in the direction of the momentum surplus and the wave
vector perpendicular to it.

As previously, the momentum distribution is assumed
to be elongated in the z-direction, and consequently
the fluctuating current also flows in this direction. The
magnetic field has a non-vanishing component along the
y-direction and the electric filed is in the z-direction. Fi-
nally, the wave vector is parallel to the axis z, see fig. 1.
It is also assumed that the momentum distribution obeys
the mirror symmetry f(—p) = f(p), and then the permit-
tivity tensor has only non-vanishing diagonal components.
Taking into account all these conditions, one simplifies the
dispersion equation (7) to the form

H(w) = k2 — w?e¢**(w, k) = 0. (8)

The existence of unstable solutions of eq. (8) can be
proved without solving it. The so-called Penrose crite-
rion [13], which follows from analytic properties of the
permittivity as a function of w, states that the disper-
sion equation H(w) = 0 has unstable solutions if H(w =
0) < 0. The Penrose criterion was applied to eq. (8) in [6].
A more general discussion of the instability condition is
presented in [11]. Without entering into details, there ex-
ist unstable modes if the momentum distribution aver-
aged (with a proper weight) over momentum length is
anisotropic.

To solve the dispersion equation (8), the parton mo-
mentum distribution has to be specified. Several analytic
(usually approximate) solutions of the dispersion equation
can be found in [6,10,11]. A typical example of the numer-
ical solution, which gives the unstable mode frequency in
the full range of wave vectors is shown in fig. 2 taken
from [9]. The mode is pure imaginary and v = Imw(k, ).
The parameters a| and o control the widths of longitudi-
nal (z) and transverse momentum distributions; the cou-
pling is ay = g%/47 = 0.3, and the effective parton density
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is chosen to be 6fm 3. As seen, there is a finite interval
of wave vectors for which the unstable modes exist.

4 Isotropization and Abelianization

When the instabilities grow the system becomes more
isotropic because the Lorentz force changes particle’s mo-
menta and the growing fields carry an extra momentum.
To explain the mechanism I assume, as previously, that
initially there is a momentum surplus in the z-direction.
The fluctuating current tends to flow in the z-direction
with the wave vector pointing in the z-direction. Since
the magnetic field has a y component, the Lorentz force,
which acts on partons flying along the z-axis, pushes the
partons in the z-direction where there is a momentum
deficit. Numerical simulations discussed in the next sec-
tion show the efficiency of the mechanism.

The system isotropizes not only due to the effect of the
Lorentz force but also due to the momentum carried by the
growing field. When the magnetic and electric fields are
oriented along the y and z axes, respectively, the Poynting
vector points in the direction z that is along the wave vec-
tor. Thus, the momentum carried by the fields is oriented
in the direction of the momentum deficit of particles.

One wonders whether non-Abelian non-linearities do
not stabilize the unstable modes. An elegant argument, [17]
suggests that this is not the case as the system sponta-
neously chooses an Abelian configuration in the course of
instability development. Let me explain the idea.

In the Coulomb gauge the effective potential of the
unstable configuration has the form

1
VéH[Aa] — _HQAa A Zg2fabcfade(AbAd)(AcAe),

which is shown in fig. 3 taken from [17]. The first term
(with g > 0) is responsible for the very existence of
the instability. The second term, which comes from the
Yang-Mills Lagrangian, is of pure non-Abelian nature.
The term is positive and thus it counteracts the insta-
bility growth. However, the non-Abelian term vanishes
when the potential A is effectively Abelian, and conse-
quently, such a configuration corresponds to the steepest
decrease of the effective potential. Thus, the system spon-
taneously abelianizes in the course of instability growth.
The abelianization is further discussed in sect. 7.

Fig. 3. The effective potential of the unstable magnetic mode
as a function of magnitude of two colour components of A be-
longing to the SU(2) gauge group. The figure is taken from [17].
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5 Hard-loop effective action

Knowledge of the gluon polarization tensor or, equiva-
lently, the chromoelectric permittivity tensor is sufficient
to discuss the system’s stability and the dispersion re-
lations of unstable modes. For more detailed dynamical
studies the effective action of anisotropic QGP is needed.
Such an action for a system, which is on average locally
colour neutral, stationary and homogeneous, was derived
in [18], see also [19]. The starting point was the effec-
tive action which describes an interaction of classical fields
with currents induced by these fields in the plasma. The
Lagrangian density is quadratic in the gluon and quark
fields and it equals

£a) = - [ (AT @ - 9 AL)
() y)m)) : ©)

the Fourier-transformed gluon polarization tensor I7%/ (k)
is given by eq. (6) while the quark self-energy X(k)
reads [16,20]

D NZ -1
8N,

&Pp fp)p-y
(2m)% |p| p -k’

Xk) =9 (10)

where f(p) = n(p) + 7(p) + 2n,(p). The action (9) holds
under the assumption that the field amplitude is much
smaller than T'/g, where T' denotes the characteristic mo-
mentum of (hard) partons.

Following Braaten and Pisarski [21], the La-
grangian (9) was modified to comply with the requirement
of gauge invariance. The final result, which is non-local but
manifestly gauge invariant, is [18]

et = [ o 10 Fo (2 ) B

(11)

where F!" is the strength tensor and D denotes the covari-
ant derivative. The effective action (11) generates n-point
functions which obey the Ward-Takahashi identities. For
the equilibrium plasma the action (11) is equivalent to
that derived in [22] and in the explicitly gauge-invariant
form in [21]. The equilibrium hard-loop action was also
found within the semiclassical kinetic theory [23,24].

6 Equations of motion

Transport theory provides a natural framework to study
temporal evolution of non-equilibrium systems and it has
been applied to QGP for a long time. The distribution

functions of quarks (@), antiquarks (@), and gluons (G),



St. Mréwcezynski: Scenario of instabilities driven equilibration of the quark-gluon plasma

which are the N, x N, and (N? — 1) x (N? — 1) ma-
trices, respectively, satisfy the transport equations of the
form [25,26]:

i g . 0Q(p,7) | _
PDQM.2) + § 7 { Fuu(), B} o
= 0Q(p, =
0,0, 2) ~ L B, ZHPD | _ g (19
2 Opy
" g " 8G(p,(l?) —
P 0.6 ) + § 4 Fule), 5B o,
where {...,...} denotes the anticommutator; the trans-

port equation of (anti)quarks is written down in the fun-
damental representation while that of gluons in the adjoint
one. Since the instabilities of interest are very fast, much
faster than the inter-parton collisions, the collision terms
are neglected in egs. (12). The gauge field, which enters the
transport equations (12), is generated self-consistently by
the quarks and gluons. Thus, the transport equations (12)
should be supplemented by the Yang-Mills equation

D, F* (z) = j*(x), (13)
where the colour current is given as
&’p p* ~
() — L S | — T.G 14

with 7, and T, being the SU(N.) group generators in
the fundamental and adjoint representation, respectively.
There is a version of eqs. (12), (13) where colour charges of
partons are treated as a classical variable [27]. Then, the
distribution functions depend not only on z and p but on
the colour variable as well.

When egs. (12), (13) are linearized around the state,
which is stationary, homogeneous and locally colourless,
the equations provide the hard-loop dynamics encoded in
the effective action (11). The equations are of particularly
simple and elegant form when the quark 6Q(p,z), anti-
quark §Q(p,z) and gluon 6G(p,z) deviations from the
stationary state described by Qg (p) = dn(p), Q¢ (p) =
§n(p), and G§(p) = §%n,(p) are parameterised by the
field W# (v, z) through the relations

5Q(p,2) = g 5 v, ),
5Q(p.2) = g Z L (v,
0G(p,x) = gagi)(up) T, Tr [TGW“(v,ac)],

where v .= p/|p|. Then, instead of the three transport
equations (12) one has one equation

v, DFWY(v,2) = —v,F* () (15)
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while the Yang-Mills equation (13) reads
d’p p” 9f(p)

D,F*(z :—92/ — WP(v,x), 16

H© ( ) (27T)3 |p| 8pp ( ) ( )

where v#* = (1,v). In contrast to the effective action (11),
egs. (15), (16) are local in coordinate space. Therefore, the
transport equation (15) combined with eq. (16) is often
called the local representation of the hard-loop dynamics.
Equations (15), (16), which for the isotropic equilibrium
plasma were first given in [28], are used in the numerical
simulations [7,29-32] discussed in the next section.
Recently the fluid equations, which are applicable to
short-time scale colour phenomena in QGP, have been de-
rived [33] from the kinetic equations (12). The quantities,
which enter the equations, like the hydrodynamic veloc-
ity or pressure are gauge dependent matrices in the colour
space. The chromo-hydrodynamic approach is designed for
numerical studies of the dynamics of the unstable QGP.

7 Numerical simulations

Temporal evolution of the anisotropic QGP was stud-
ied by means of numerical simulations [7,12,29-31,34,32,
35]. The dynamics governed by a complete hard-loop ac-
tion [18], was simulated in [7,29-32]. These simulations
provide fully reliable information on the field dynamics
but particles are included as a stationary (anisotropic)
background. The simulations [12,34,35] treat the quark-
gluon system completely classically: partons, which carry
classical colour charges, interact with a self-consistently
generated classical chromodynamic field. The simula-
tions [7,12] were effectively performed in 1+ 1 dimensions
as the chromodynamic potentials depend on time and one
space variable. The calculations [29,30] represent full 143
dimensional dynamics. In most cases the SU(2) gauge
group was studied but some SU (3) results, which are qual-
itatively very similar to SU(2) ones, are given in [30]. The
techniques of discretization used in [7,12,29,30] are rather
different while the initial conditions are quite similar. The
initial field amplitudes are distributed according to the
Gaussian noise and the momentum distribution of par-
tons is strongly anisotropic.

In fig. 4, taken from [7], the results of the hard-loop
simulation performed in 1+ 1 dimensions are shown. One
observes exponential growth of the field energy density
which is dominated, as expected, by the magnetic field
which is transverse to the direction of the momentum
deficit. The growth rate appears to be equal to that of
the fastest unstable mode (v*). Figure 5, taken from [12],
shows results of the classical simulation on the (1 + 1)-
dimensional lattice of physical size L = 40 fm. As in fig. 4,
the amount of field energy grows exponentially and the
magnetic contribution dominates.

The Abelian (U(1)) and non-Abelian (SU(2)) results
of the (1 + 1)-dimensional simulation presented in fig. 5
are remarkably similar to each other. The abelianization
appears to be very efficient in 141 dimensions, as shown in
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to the total energy transferred from the particles. The figure
is taken from [7].
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figs. 6, 7, taken from [12] and [7], respectively. The authors
of [12] analysed the functionals:

L
d
\//0 —(Ag Ay + AgA2),

- [V de TO[(i[A4,, A.])?]
C:/O L Tr[A2+A2]

¢rms

(17)
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Fig. 6. Temporal evolution of the functionals C and ¢rms Mea-
sured in GeV. The figure is taken from [12].
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Fig. 7. Temporal evolution of the (scaled) functionals C' and
jrms. The figure is taken from [7].

The quantities jrms and C, studied in [7] and shown in
fig. 7, are fully analogous to ¢.ms and C' defined by eq. (17)
but the components of the chromodynamic potential are
replaced by the respective components of the colour cur-
rent. As seen in figs. 6, 7, the field (current) commutator
decreases in time although the magnitude of the field (cur-
rent), as quantified by ¢rms (Jrms), Srows.

The results of the (1 4 3)-dimensional simulations [29,
30] are qualitatively different from those of 1 + 1 dimen-
sions. As seen in figs. 8, 9, taken from [29,30], respec-
tively, the growth of the field energy density is exponen-
tial only for some time, and then the growth becomes ap-
proximately linear. The regime changes when the field’s
amplitude is of order k/g, where k is the characteristic
wave vector. Then, the non-Abelian effects start to be im-
portant. Figure 10 taken from [29] demonstrates that the
abelianization is efficient in 1 4+ 3 dimensions only for a
finite interval of time. The commutator C' shown in fig. 10
is a natural generalization of the (1 + 1)-dimensional com-
mutator defined by eq. (17).

The regime of linear growth of the magnetic energy,
shown in figs. 8, 9 was studied numerically in [31]. It was
found that when the exponential growth of the magnetic
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energy ends, the long-wavelength modes associated with
the instability stop growing, but that they cascade energy
towards the ultraviolet in the form of plasmon excitations
and a quasi-stationary state with the power law distribu-
tion k=2 of the plasmon mode population appears. The
phenomenon was argued [31] to be very similar to the
Kolmogorov wave turbulence where the long-wavelength
modes transfer their energy without dissipation to the
shorter and shorter ones.

A different picture of the non-Abelian regime emerges
from the classical simulation [35] where the system with
strong momentum anisotropy was studied. When the field
strength is high enough, the energy drained by the Weibel-
like plasma instability from the particles does not build
up exponentially in magnetic fields but instead returns
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Fig. 10. Temporal evolution of the field commutator quanti-
fied by C. The figure is taken from [29].
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Fig. 11. Temporal evolution of the energy-momentum tensor
components 7% and (T%Y + T°)/2. The Abelian and non-
Abelian results are shown. The figure is taken from [12].

isotropically to the ultraviolet not via the quasi-stationary
process, as argued in [31], but via a rapid avalanche.

The effect of isotropization of particle momentum dis-
tribution due to the action of the Lorentz force is nicely
seen in the (1 + 1)-dimensional classical simulation [12].
In fig. 11 taken from [12] there are shown diagonal com-
ponents of the energy-momentum tensor 7#”. The initial
momentum distribution is such that T%* = 0. As seen,
T** exponentially grows.

The numerical studies discussed so far deal with the
quark-gluon system of constant volume. A very elegant
formulation of the hard-loop dynamics of the system,
which experiences the boost invariant expansion in one
direction, is given in [32]. In agreement with the earlier
expectations [9,11], the expansion is shown both numeri-
cally and analytically [32] to slow down the growth of in-
stabilities even when the initial state is highly anisotropic.
The field amplitude does not grow exponentially with time



882

but rather as the exponent of v/¢. The effect of expansion
requires further quantitative analysis, as the instabilities
might occur irrelevant for heavy-ion collisions, if they are
not fast enough to cope with the system’s expansion.

An attempt to study an unstable parton system in the
conditions close to those, which are realized in relativistic
heavy-ion collisions, was undertaken in [36-38]. The sys-
tem was described in terms of the colour glass condensate
approach [39] where small-z partons of large occupation
numbers, which dominate the wave functions of incom-
ing nuclei, are treated as classical Yang-Mills fields. Hard
modes of the classical fields play the role of particles. The
instabilities, identified as the Weibel modes, appear to be
generated when the system of Yang-Mills fields expands
into the vacuum.

8 Outlook

Although an impressive progress has been achieved, the
numerical simulations are still quite far from a real sit-
uation met in relativistic heavy-ion collisions. Complete
(1 + 3)-dimensional simulations are needed as the results
of [29,30] show that the dimensionality crucially matters.
The system expansion needs to be incorporated. The effect
of back reaction of fields on the particles is fully included
only in the classical simulations [12,35-38]. The effect is
difficult to study in quantum field approaches as it goes
beyond the hard-loop physics which has appeared very
rich and complex [29,30]. An attempt to go beyond the
hard-loop approximation was undertaken in [40] where
the higher-order terms of the effective potential of the
anisotropic system were found. Since these terms can be
negative, the instability is then driven not only by the neg-
ative quadratic term but by the higher-order terms as well.

The coupling constant is assumed to be small in all
studies of the unstable parton systems. This is certainly a
severe limitation as the phenomenology of heavy-ion col-
lisions suggests that QGP manifests very small viscosity
characteristic for strongly coupled systems [3]. However,
it has been recently argued [41,42] that an anomalously
small viscosity of the quark-gluon system can arise from
interactions with turbulent colour fields dynamically gen-
erated by the instabilities. Therefore, it might well be that
the scenario of instabilities-driven equilibration does not
only solve the problem of fast thermalization but other
puzzling features of QGP.

References

. U.W. Heinz, AIP Conf. Proc. 739, 163 (2005).

F. Retiere, J. Phys. G 30, S827 (2004).

E. Shuryak, J. Phys. G 30, S1221 (2004).

. R. Baier, A.H. Mueller, D. Schiff, D.T. Son, Phys. Lett. B
539, 46 (2002).

L

o

10.

11.

12.
13.

14.
15.
16.

17.
18.

19.
20.

21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

39.

40.

41.

42.

The European Physical Journal A

. P. Arnold, D.T. Son, L.G. Yaffe, Phys. Rev. D 59, 105020
(1999).

St. Mréwcezyiiski, Phys. Rev. C 49, 2191 (1994).

A. Rebhan, P. Romatschke, M. Strickland, Phys. Rev.
Lett. 94, 102303 (2005).

P. Arnold, J. Lenaghan, G.D. Moore, L.G. Yaffe, Phys.
Rev. Lett. 94, 072302 (2005).

J. Randrup, St. Mréwczynski, Phys. Rev. C 68, 034909
(2003).
P. Romatschke, M. Strickland, Phys. Rev. D 68, 036004
(2003).
P. Arnold, J. Lenaghan, G.D. Moore, JHEP 0308, 002
(2003).

A. Dumitru, Y. Nara, Phys. Lett. B 621, 89 (2005).

N.A. Krall, A.W. Trivelpiece, Principles of Plasma Physics
(McGraw-Hill, New York, 1973).

St. Mréwczyriski, Acta Phys. Pol. B 37, 427 (2006).

St. Mréwczyniski, Phys. Lett. B 393, 26 (1997).

St. Mréwczynski, M.H. Thoma, Phys. Rev. D 62, 036011
(2000).

P. Arnold, J. Lenaghan, Phys. Rev. D 70, 114007 (2004).
St. Mréwczynski, A. Rebhan, M. Strickland, Phys. Rev. D
70, 025004 (2004).

R.D. Pisarski, arXiv:hep-ph/9710370.

P. Arnold, G.D. Moore, L.G. Yaffe, JHEP 0301, 039
(2003).

E. Braaten, R.D. Pisarski, Phys. Rev. D 45, 1827 (1992).
J.C. Taylor, S.M.H. Wong, Nucl. Phys. B 346, 115 (1990).
J.P. Blaizot, E. Iancu, Nucl. Phys. B 417, 608 (1994).
P.F. Kelly, Q. Liu, C. Lucchesi, C. Manuel, Phys. Rev. D
50, 4209 (1994).

H.T. Elze, U'W. Heinz, Phys. Rep. 183, 81 (1989).

St. Mréwczyriski, Phys. Rev. D 39, 1940 (1989).

U.W. Heinz, Ann. Phys. (N.Y.) 161, 48 (1985).

J.P. Blaizot, E. Iancu, Phys. Rep. 359, 355 (2002).

P. Arnold, G.D. Moore, L.G. Yaffe, Phys. Rev. D 72,
054003 (2005).

A. Rebhan, P. Romatschke, M. Strickland, JHEP 0509,
041 (2005).

P. Arnold, G.D. Moore, Phys. Rev. D 73, 025006 (2006).
P. Romatschke, A. Rebhan, arXiv:hep-ph/0605064.

C. Manuel, St. Mréwczynski, arXiv:hep-ph/0606276.

A. Dumitru, Y. Nara, Eur. Phys. J. A 29, 65 (2006).

A. Dumitru, Y. Nara, M. Strickland, arXiv:hep-
ph/0604149.

P. Romatschke, R. Venugopalan, Phys. Rev. Lett. 96,
062302 (2006).

P. Romatschke, R. Venugopalan, Eur. Phys. J. A 29, 71
(2006).

P. Romatschke, R. Venugopalan, Phys. Rev. D 74, 045011
(2006).

E. Iancu, R. Venugopalan, in Quark-Gluon Plasma 3,
edited by R.C. Hwa, X.N. Wang (World Scientific, Sin-
gapore, 2004).

C. Manuel, St. Mréwczynski, Phys. Rev. D 72, 034005
(2005).

M. Asakawa, S.A. Bass, B. Muller, Phys. Rev. Lett. 96,
252301 (2006).

M. Asakawa, S.A. Bass, B. Muller, arXiv:hep-ph/0608270.



